ANDHRA UNIVERSITY SCHOOL OF DISTANCE EDUCATION ASSIGNMENT QUESTION PAPER

M.A. / M.Sc (Previous) Mathematics - Supplementary

Paper - | ALGEBRA

Answer ALL Questions

All Questions carry equal marks

Section - A

 $(4 \times 4 = 16 \text{ Marks})$

- 1. (a) Prove that a homomorphism $\phi : G \to H$ is injective if and only if $ker \phi = \{e\}$.
 - (b) State and prove Cayley's theorem
- 2. (a) Prove that alternating group A_n is simple if n > 4. Consequently S_n is not solvable if n > 4.
 - (b) State and prove Cauchy's theorem for abelian group.
- 3. (a) Let $f: R \to S$ be a homomorphism of a ring R into a ring S. Then prove that ker f = (0) if and only if f is 1-1.
 - (b) If *R* is a commutative ring, then prove that an ideal *P* in *R* is prime if and only if $ab \in P$, $a \in R$, $b \in R$, implies $a \in P$ or $b \in P$.
- 4. (a) Let $f(x) \in \mathbb{Z}[x]$ be prime. Then prove that f(x) is reducible over Q if and only if f(x) is reducible over \mathbb{Z} .
 - (b) Let *E* and *F* be fields and let $\sigma: F \to E$ be an embedding of *F* into *E*. Then prove that \exists a field *K* such that *F* is a subfield of *K* and σ can be extended to an isomorphism of *K* onto *E*.

Section - B $(4 \times 1 = 4)$

5. Answer all the following :

- (a) Let G be a group and $a, b \in G$ such that ab = ba. If o(a) = m, o(b) = n and (m, n) = 1 then prove that o(a, b) = mn.
- (b) Express the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 1 & 6 & 4 & 3 \end{pmatrix}$ as a product of disjoint cycles.
- (c) Prove that the centre of a ring is a subring.
- (d) Find the smallest extension of Q having a root of $x^2 + 4 \in Q[x]$.

ANDHRA UNIVERSITY SCHOOL OF DISTANCE EDUCATION ASSIGNMENT QUESTION PAPER

M.A. / M.Sc (Previous) Mathematics- Supplementary Paper-II LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS

Answer ALL Questions

All Questions carry equal marks Section - A

(4 x 4 = 16 Marks)

- 1. (a) Let T be a linear operator on an n-dimensional vector space V. Then prove that the characteristic and minimal polynomials for T have the same roots, except for multiplicities.
 - (b) State and prove Cayley Hamilton theorem.
- 2. (a) If $y_1(x)$ and $y_2(x)$ are any two solutions of y''+p(x)y'+Q(x)y=0 on [a,b], then prove that their Wronskian $W = W(y_1, y_2)$ is either identically zero or never zero on [a,b].
 - (b) Use method of variation of parameters, solve y'' + y = cosec.

3. (a) If
$$W(t)$$
 is the Wronskian of the two solutions $x = x_1(t)$, $y = y_1(t)$ and $x = x_2(t)$, $y = y_2(t)$ of the homogeneous system $\frac{dx}{dt} = a_1(t) x + b_1(t) y$;
 $\frac{dy}{dt} = a_2(t) x + b_2(t) y \rightarrow (1)$ are linearly independent on $[a, b]$, then prove that $x = c_1 x_1(t) + c_2 x_2(t)$; $y = c_1 y_1(t) + c_2 y_2(t)$ is the general solution of system (1) on this interval.

- (b) Find the general solution of the system $\frac{dx}{dt} = -3x + 4y$; $\frac{dy}{dt} = -2x + 3y$.
- 4. (a) By the method Laplace transforms, find the solution of

$$y''-4y'+4y=0$$
, $y(0)=0$ and $y'(0)=3$.

(b) State and prove convolution theorem on Laplace transforms.

Section - B

$$(4 \times 1 = 4)$$

5. Answer all the following

- (a) Let $T \in L(R)$, $F = \mathbb{R}$ and matrix of T w.r.t. the standard basis is $\begin{bmatrix} 5 & 3 \\ -6 & -4 \end{bmatrix}$. Find the characteristic and minimal polynomials of T.
- (b) Consider two functions $f(x) = x^3$ and $g(x) = x^2 |x|$ on the interval [-1, 1]. Show that their Wronksian W(f,g) vanishes identically.
- (c) Find the general solution of the system

$$\begin{cases} \frac{dx}{dt} = x\\ \frac{dy}{dt} = y \end{cases}$$

(d) Find the inverse Laplace transforms of $\frac{12}{(p+3)^4}$.

ANDHRA UNIVERSITY SCHOOL OF DISTANCE EDUCATION ASSIGNMENT QUESTION PAPER M.A. / M.Sc (Previous) Mathematics - Supplementary Paper - III REAL ANALYSIS Answer ALL Questions All Questions carry equal marks Section - A (4 x 4 = 16 Marks)

- 1. (a) If $\{p_n\}$ is a sequence in a compact metric space X, then prove that some subsequence of $\{p_n\}$ converges to a point of X.
 - (b) Let f be defined on [a,b]; if f has a local maximum at a point $x \in (a,b)$ and if f'(x) exists, then prove that f'(x) = 0.
- 2. (a) Assume α increases monotonically and $\alpha' \in R$ on [a, b]. Let f be a bounded real function on [a, b]. Then prove that $f \in R(\alpha)$ if and only if $f\alpha' \in R$. In that case, $\int_{a}^{b} f \ d\alpha = \int_{a}^{b} f(x)\alpha'(x)dx.$
 - (b) State and prove the fundamental theorem of calculus.
- 3. (a) Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a, b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a, b]. If $\{f_n\}$ converges uniformly on [a, b], then prove that $\{f_n\}$ converges uniformly on [a, b], to a function f and $f'(x) = \lim_{n \to \infty} f'_n(x) (a \le x \le b)$.
 - (b) Suppose $\sum c_n$ converges. Put $f(x) = \sum_{n=0}^{\infty} c_n x^n$, (-1 < x < 1). Then prove that $\lim_{x \to 1} f(x) = \sum_{n=0}^{\infty} c_n$.
- 4. (a) Suppose \overline{f} maps on open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m and \overline{f} is differentiable at a point $\overline{x} \in E$. Then prove that the partial derivatives $(D_j f_i)(\overline{x})$ exist and

$$f'(\overline{x})e_j = \sum_{i=1}^m (D_j \ f_i)(\overline{x})y_i \ (1 \le j \le n).$$

(b) State and prove contraction principle.

(4x1=4)

5. Answer all the following.

(a) If
$$0 \le x < 1$$
, then prove that $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$.

- (b) If $f \in R(\alpha)$ and $g \in R(\alpha)$ on [a,b] then prove that $f + g \in R(\alpha)$ on [a,b] and $\int_{a}^{b} (f+g) \, d\alpha = \int_{a}^{b} f \, d\alpha + \int_{a}^{b} g \, d\alpha$
- (c) Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.

(d) If
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{for } (x,y) \neq (0,0) \\ 0 & \text{for } (x,y) = (0,0) \end{cases}$$
 then prove that $(D_1 f)(x,y)$ and

 $(D_2 f)(x, y)$ exist at every point of \mathbb{R}^2 , although f is not continuous at (0, 0).

ANDHRA UNIVERSITY SCHOOL OF DISTANCE EDUCATION ASSIGNMENT QUESTION PAPER M.A. / M.Sc (Previous) Mathematics- Supplementary

Paper - IV TOPOLOGY

Answer ALL Questions

All Questions carry equal marks

Section - A (4 x 4 = 16 Marks)

- 1. (a) Let X be a metric space then prove that a subset G of X is open \Leftrightarrow it is a union of open spheres.
 - (b) Let X and Y be metric spaces and f a mapping of X into Y. Then prove that f is continuous if and only if $f^{-1}(G)$ is open in X whenever G is open in Y.
- 2. (a) State and prove Lindelof 's theorem.
 - (b) Prove that every sequentially compact metric space in totally bounded.
- 3. (a) Prove that every compact Hausdorff space is normal.
 - (b) Show that a Hausdorff space is locally compact if and only if each of its points is an interior point of some compact space.
- 4. (a) State and prove real Stone Weirstrass theorem.
 - (b) Show that $C_o(X, \mathbb{R})$ and $C_o(X, \mathbb{C})$ are closed sub spaces of $C(X, \mathbb{R})$ and $C(X, \mathbb{C})$ respectively.

Section - B
$$(4 \times 1 = 4)$$

5. Answer all the following :

- (a) Let *X* be an arbitrary non-empty set, and define *d* by $d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$. Then prove *d* is a metric on *X*.
- (b) Show that a subspace of a topological space is itself a topological space.
- (c) Show that any continuous image of a compact space is compact.
- (d) If X is a locally compact Hausdorff space, then prove that $C_o(X, R)$ is a sublattice of C(X, R).

ANDHRA UNIVERSITY SCHOOL OF DISTANCE EDUCATION ASSIGNMENT QUESTION PAPER M.A. / M.Sc (Previous) Mathematics - Supplementary Paper-V DISCRETE MATHEMATICS Answer ALL Questions All questions carry equal marks Section - A (4 x 4 = 16 Marks)

- 1. (a) Prove that a graph is bipartite if and only if it contains no odd cycles.
 - (b) Let G(V, E) be a graph with no isolated vertex. Then show that G has an Euler circuit if and only if G is connected and the degree of every vertex of G is even.
- 2. (a) Show that every distributive lattice is modular. Is the converse of this result true? Justify your claim.
 - (b) Let *B* be a Boolean algebra. Prove that an ideal *M* in *B* is maximal if and only if for any $b \in B$ either $b \in M$ or $b' \in M$, but not both hold.
- 3. (a) Describe an automaton and semi automaton.
 - (b) Explain by means of an example the concept of an automaton associated with a monoid (S, \bullet) . Show that there exists an automaton whose monoid is isomorphic to (S, \bullet) .
- 4. (a) State and prove the Hamming bound theorem.
 - (b) Let *C* be an ideal $\neq \{0\}$ of V_n . Then prove that there exists a unique $g \in V_n$ with the following properties.

(i)
$$g | x^n - 1$$
 in $F_q[x]$
(ii) $C = (g)$
(iii) g is monic.
Section - B
(4 x 1 = 4)

5. Answer all the following :

- (a) Show that a graph is a tree if and only if it has no cycles and |E| = |V| 1.
- (b) Determine the symbolic representation of the circuit given by

 $p = (x_1 + x_2 + x_3)(x' + x_2)(x_1x_3 + x_1'x_2)(x_2' + x_3)$

- (c) Define the group kernel of a monoid (S, o). Show that the group kernel G_5 is a group within (S, o).
- (d) Show that a linear code $C \subseteq V_n$ is cyclic if and only if C is an ideal in V_n .